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1. INTRODUCTION
The purpose of this report is to make the physical oceano-

graphic and acoustic characteristics of the Dabob Bay range
known to range users and prospective users, who may then apply
the information to specific projects.

The report includes chapters on climate, sound speed,
acoustics, general parameters, and scheduling precautions.
Included in the general parameters chapter are sections on
density structure and on tides and currents.

The Dabob Bay range is one of five ranges operated by the
Naval Torpedo Station. (For details, see NAVSEA OD 419641.)
The others are the Jervis Inlet range, Nanoose range, Hood
Canal range, and Keyport range. Dabob is fundamentally a
three-dimensional (3-D) underwater acoustic tracking range;
however, optical in-air tracking capability is also offered.

The Dabob Bay range is located off Hood Canal and is situ-
ated a short distance west of the Naval Submarine Base, Bangor.
The range is presently 12,000 yards long and 2,500 yards wide.
Maximum water depth is around 600 feet. Figure 1 indicates
the location of the range and Figure 2 illustrates the approach
to Dabob Bay. The range tracking area, its bathymetry, and its
instrumentation sites are shown in Figure 3.

Dabob Bay is unique in the variability of its water char-
acteristics of salinity and temperature. This variability re-
sults from intrusions of coastal Pacific Ocean water into the
bay. A cellular, non-homogeneous water mass results. This
water mass then responds by internal circulative processes to
attain a more homogeneous state.

The various states/conditions of Dabob waters have been
described by several investigators and the scientific results
are referenced in this report (see Kollmeyer's thesis 2 and
Ebbesmeyer's thesis3) A description of the end result, as it

4NAVSEA OD 41964 Revision 1, NAVTORPSTA Range Users' Guide, July 1975,
unclassified
2Water Properties and Circulation in Dabob Bay - Autumn 1962, Ronald C.
Kollmeyer, M.S. thesis, University of Washington, Seattle, WA, 1965,
unclassified
'Some Observations of Medium Scale Water Parcels in a Fjord: Dabob Bay,
Washington, Curtis C. Ebbesmeyer, Ph.D. thesis, University of Washington,
Seattle, WA 1973, unclassified
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affects device ranging and underwater acoustics, is what the
range user needs and this will be addressed after a discussion
of pertinent climatological characteristics. Range use logis-
tical topics are discussed in NAVSEA OD 41964.
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2, CLIMATE
This chapter describes the climate of the Dabob Bay and

Hood Canal region and its effect on the water characteristics.
Much of the information was obtained from Phillips' Washington
Climate4 , National Climatic Center5, and U.S. Weather Bureau'.
The surface-wind characteristics were developed from Technical
Report No. 377, AWA/ABAM joint venture8 , U.S. Weather Bureau9A0,
and in-situ data records.

A, AIR TEMPERATURE

The air temperature cycle is in phase with the annual heat-
ing and cooling cycle of the near-surface to surface water layer.
In Hood Canal, for example, the near-surface water layer warms
around 5.50C for an average air temperature increase of around
130C. Temperature changes at this and greater depths are shown
in Figure 4. Typical monthly mean air temperatures for a yearly
cycle at two weather stations, Sea-Tac airport and Bremerton,
are given in Figure 5. Also shown in Figure 5 is the yearly
cycle for solar radiation.

Daily maximum and minimum temperature excursions from the
monthly mean range from ±30C in winter to ±6oC in summer. Thus,

'Washington Climate, Earl L. Phillips, Cooperative Extension Service, College
of Agriculture, Washington State University, Pullman, WA, January 1968,
unclassified
'LocaZ Climatological Data for Seattle Washington (Seattle-Tacoma Airport),
National Oceanic and Atmospheric Administration, Environmental Data Service,
National Climatic Center, Asheville, NC, 1974, unclassified
6Climatological Summary for Bremerton Washington, U.S. Department of
Commerce, Weather Bureau, 1931-1960, unclassified

7Technical Report No. 37, The Surface Winds over Puget Sound the Strait of
Juan de Fuca and their Oceanographic Effects, Russell G. Harris and Maurice
Rattry, Jr., University of Washington Department of oceanography, July
1954, unclassified

8Department of the Navy OICC TRIDENT Model Windtunnel Test Explosives Hand-
ling Wharf No. 1 - Final Report, AWA/ABAM joint venture, Contract N68248-
73-C-003, Adrian Wilson Associates, Los Angeles, CA and ABAM Engineers, Inc.,
Tacoma, WA, April 1975, unclassified
9ClimatologicaZ Summary for Coupeville - Oak Harbor Washington (Whidbey Island),
U.S. Department of Commerce, Weather Bureau, 1931-1960, unclassified

m°Climatological SAnvary for Everett Washington (Paine Field), U.S. Department
of Commerce Weather Bureau, 1931-1960, unclassified

7
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for example, an average maximum daily temperature in July is
around 24.5 0C (76.10 F) and an average minimum daily winter
temperature in January is 10C (33.8 0F). Historical daily
temperature deviations from the monthly mean temperature for
Bremerton and Sea-Tac airport are given in Table 1.

From Figures 4 and 5 it can be observed that the sea sur-
face temperatures, compared to air temperatures, are generally
lower in summer and greater in autumn and winter. This thermal
lag, representative of areas adjacent to large bodies of water,
helps keep air temperature extremes below those encountered in
non-marine environments.

B. PRECIPITATION

Precipitation can vary considerably as a function of loca-
tion in the Dabob Bay region, which is heavily shadowed by the
Olympic mountains. Figure 6, showing monthly mean precipitation
at three stations close to the region, provides examples. The
variability of precipitation at Bremerton is illustrated in
Figure 7. The upper band edge of the data envelope defined by
the iecords for Sea-Tac, Bremerton, and Keyport is considered
representative of the mean monthly precipitation for the Dabob
Bay region.

The applicability of Figure 6 for predicting Dabob Bay
precipitation is reinforced by comparison with precipitation
records now being obtained at Bangor during Trident construction.

Precipitation probabilities and rainfall intensities ob-
tained from Phillips' Washington Climate, are provided as
Tables 2 and 3.

Streams and rivers entering Hood Canal, including the Quil-
cene River, which enters an arm of Dabob Bay, reduce the sur-
face-layer water salinity of the bay. The relative contributions
of these sources are unknown because the low salinity surface
waters of Hood Canal enter Dabob through tidal action. The
combined sources, however, do maintain a low salinity surface
layer in Dabob Bay the year around.

Maximum depression of surface salinity occurs in late winter
to early summer, when the accumulation of runoff in the surface
layer is greatest. Typical salinity profile envelopes for
Dabob Bay are shown in the next chapter.

C. CLOUD COVER

The percentage prevalence of cloud cover greater than 0.8 is
given in Figure 8 for Seattle. Cloud cover prevalences in the
three ranges of 0-0.3, 0.4-0.7, and 0.8-1.0 are referred to as
clear, partly cloudy, and cloudy conditions, respectively.

10
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Table 2. Precipitation

JAN FEB MAR APR MAY JUN
Less More Less More Less More Less More Less More Less More

Station Than Than Than Than Than Than Than Than Than Than Than Than

BREMERTON

1 yr in 10 2.8 10.5 2.2 8.1 1.6 6.9 .4 4.6 .3 2.9 .3 -.4

2 yr in 10 3.2 9.1 2.6 6.8 2.1 5.5 1.1 3.6 .5 2.1 .4 2.1

3 yr in 10 3.8 8.7 2.7 5.8 2.2 4.3 1.4 2.9 .8 1.7 .7 1.8

4 yr in 10 4.5 6.3 3.6 5.6 2.6 1.9 1.7 2.7 .9 1.5 1.0 1.3

SEATTLE
CITY

1 yr in 10 2.6 6.9 1.9 6.8 1.7 5.7 .6 3.0 .6 3.3 .2 3.0

2 yr in 10 3.0 7.6 2.0 5.7 2.1 4.4 1.2 2.6 .6 2.6 .4 2.3

3 yr in 10 3.5 r.3 2.3 5.5 2.1 4.0 1.6 2.4 1.0 1.8 .6 2.0

4 yr in 10 3.8 5.6 2.8 4.6 2.7 3.6 1.6 2.3 1.1 1.6 .9 1.6

t.

14
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Probabilities (Inches) (T = trace)

JUL AUG SEP OCT NOV DEC ANNUAL
Less More Less More Less More Less More Less More Less More Less More
Than Than Than Than Than Than Than Than Than Than Than Than Than Than

T 1.4 .1 1.5 .2 2.9 1.5 7.2 2.0 9.8 3.5 11.0 24.0 54.8

.1 1.0 .1 1.1 .4 2.3 1.6 5.8 2.4 8.5 4.6 9.1 28.6 49.7

.2 .7 .2 1.0 .7 2.1 2.0 4.7 2.7 8.0 4.9 8.1 31.7 46.3

.3 .5 .4 .7 1.1 1.8 2.7 4.2 3.5 7.3 5.3 7.1 32.6 41.2

.1 1.4 .2 1.4 .2 3.0 1.0 5.5 1.5 8.3 3.0 8.5 23.0 44.0

.2 .8 .3 1.2 .6 2.9 1.9 4.7 2.7 7.5 3.6 6.6 31.0 38.2

.4 .8 .4 1.2 1.0 2.3 2.3 4.0 2.9 6.7 4.2 6.2 31.7 36.6

.6 .7 .5 .7 1.3 2.0 3.0 3.5 3.7 6.1 4.5 5.5 33.3 35.6

4
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Table 3. Rainfall Intensities
(Precipitation in Inches)

PUGET SOUND LOWLANDS

Return Periods
Duration 2 yrs 5 yrs 10 yrs 25 yrs 50 yrs

30 Minutes 0.4 0.5 0.6 0.6 0.7

1 Hour 0.5 0.6 0.7 0.8 0.9

2 Hours 0.7 0.8 1.0 1.2 1.5

3 Hours 0.9 1.2 1.5 1.7 2.0

6 Hours 1.5 1.8 2.0 2.5 2.8

12 Hours 2.0 2.5 3.0 3.2 3.5

24 Hours 2.5 3.0 3.5 4.0 4.2

48 Hours 3.0 4.0 4.5 5.0 5.5

96 flours 4.0 4.5 5.5 6.0 7.0

14
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D. WINDS

The wind in Dabob Bay is funneled through elevations of
up to 600 feet on the north and east and several thousand feet
on the west. The bay entrance is completely open to southerly
winds and the central bay region is subject to Quilcene River
valley winds. Severe but infrequent storms and funneling
aroun8 the Olymp :, Mountains have produced extreme winds in
Dabob Bay. Page 39 of Kollmeyer's thesis reports that winds
frequently reached 80 mph during a 2.5-hour peak storm period.
Three and one-half Dabob Bay lengths south at Olympia, Washing-
ton, the peak recorded southerly winds reached 58 mph.

To quantify the wind characteristics in Dabob, the avail-
able observations of wind speed and direction occurring during
torpedo noise acquisition time periods were studied. These
data comprise 150 documented observations from October 1972 to
May 1976. All months except July and De.:ember were fairly well
populated with data samples.

These data were analyzed and compared with other wind re-
cords. The data do not enable compilation of conventional monthly
wind strength/duration tables but do support wind speed/frequency
estimates.

Speeds of less than 7 mph any direction occur from 48 to 58
percent of the time depending on the month. Estimates at other
speeds are presented in Figures 9 to 13. Calm is defined as
wind of less than 1 mph.

18
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Figure 12. Estimated Prevalence of Northerly Wind Strength
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3. SOUND SPEED

A. INTRODUCTION

Sound speed is a function of temperature, depth (pressure),
and salinity. In Dabob Bay the greatest variations in sound
speed occur in the topmost 100-foot layer and are due to
seasonal temperature and salinity changes.

At greater depths considerably smaller temperature varia-
tions also perturb sound speed. These latter temperature
variations are cellular-type inhomogeneities. Their depth and
location, measurements along the range centerline indicate, are
unpredictable.

Be TYPICAL ENVELOPES

Because of the inhomogeneities the sound speed and tempera-
ture envelopes are necessarily broad, as only the coarsest of
predictive envelopes is considered significant. Five predictive
envelopes that describe the Dabob Bay seasonal sound speed char-
acteristics are shown in Figure 14. These profile envelopes
also indicate temperature characteristics at depths greater than
100 feet, where salinity variation is minimal.

Under constant salinity and depth-pressure conditions, the
'variation of sound speed with temperature amounts to around

9 ft/sec/°C. However, in Figure 14 the envelope abscissa scales
are 25 ft/sec and 2*C for sound speed and temperature respec-
tively, because of the computer plotting scales presently used.
Sound speed variations due to salinity amount to around 4 ft/
sec/Yo* and must be accounted for in the topmost layer, where
large seasonal changes in salinity occur. Depth/pressure has
less effect on sound speed variations in Dabob. This is because
a 600-foot depth increase causes only about a 10 ft/sec sound
speed increase.

The probability of occurrence (P(X)) of each sound speed
envelope for a yearly period is shown in Figure 15, which re-
lates the following historical profile characteristics:

1. Profile envelope 1 is most applicable/probable during
December, January, February, and March.

/o0 = parts per thousand (ppt)

25
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Figure 14. Sound Speed Profile Envelope Types (Page 1 of 5)

(Frperiods of prevalence, see Figure 15)
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Figure 14. Sound speed Profile Envelope Types (Page 2 of 5)
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2. Profile envelope 2 is most applicable/probable
during April and May and can also occur in late March and early
June.

3. Profile envelope 3 is the most prevalent, season-
wise, of all the profile envelope types. Although it predomi-
nantly occurs during June and July, this profile type could be
observed during January, April, May, August, October, November,
and even December.

4. Profile envelope 4 and profile envelope 5, which is
a more "bowed" version of envelope 4, predominantly occur during
September. Although profile envelope 4 has significant proba-
bilities of occurrence in both August and October, profile 5
generally follows profile 4 and thus occurs in September and
October only.

The five profile envelopes were adopted after an oceanogra-
phic data study spanning the years 1971 through 1975. Appen-
dix A lists the data base for the sound speed/temperature and
salinity profile envelopes of this report. A description of
the instrumentation used to acquire these data is in NAVTORPSTA
Report 1163. Figure 16 illustrates the range centerline ( )
positional frequency of occurrence for the data samples listed
in Appendix A.

C, SPATIAL VARIATIONS

When Hood Canal water enters Dabob Bay through wind or tidal
action, a structure of water parcels is created. These parcels
have different values of temperature and salinity than the most
recent resident-type water in Dabob Bay. Ebbsmeyer's thesis
found the parcels to have up to 100 feet of thickness and hori-
zontal eytents ranging up to several thousand feet. More impor-
tant, however, was the finding that the large parcels remain
recognizably intact for several weeks before they are dissipated
by circulative processes.

The effect of these water parcels (temperature mainly and
salinity discontinuities) is shown in Figure 17. This figure
illustrates the tangle of sound speed profiles measured along
the indicated range centerline positions during six days in
October 1971.

To quantity the degree of tangle for predictive purposes,
three roughness CR) scales were adopted: R > 5 ft/sec, R >
7.5 ft/sec and h > 10 ft/sec.

INAVTORPSTA Report 1163, PhysicaZ Oceanographic Characteristics of the
Nanoose Range, W. A. Middleton, January 1973, unclassified
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The actual roughness is determined by the difference in
measured sound speed between two or more spatially separated
profiles for any stratum depths greater than 100 feet. Thus,
surface layer patchiness created by topographic shadowing is
excluded.

When the data base profiles of Appendix A are sorted on a
daily basis, as in Figure 17, roughness can be predicted as
in Figure 18. The figure shows that the spatial variation of
sound speed profiles (roughness) is highest from July to
September, lowest during November, mocerately higher during
March-April, and so on. This is useful information, showing,
for instance, that tests sensitive to refraction ancmalies
should be planned for November or March-April.

The data supporting Figure 18 is shown in Appendix B. The
asterisk (*) superscript indicates that the roughness scale
was determined without benefit of available profile data in
excess of 10.5 kyds along range centerline. Appendix B reveals
the following seasonal and positional roughness trends:

1. In years such as 1971 and 1975 the yearly incidence
of roughness scales of 10 and 7.5 is rather constant throughout
the range.

2. Roughness is clearly higher near the mouth uf the
bay. This result is consistent with the known intrusion of
Hood Canal water into the bay.

3. The incidence of spatial roughness on the scale of
R > 5 is generally 40 percent or higher during most of the year
and simultaneously highest for all three scales of roughness
during August and September.

D. SALINITY

At depths shallower than 100 feat the climate forces large
changes in the salinity structure as 3hown in Figure 19. Classi-
fication of the data samples of Appendix A revealed that at
depths in excess of 130 feet, two l-ppt (&)-wide salinity pro-
file envelopes could encompass all the data. At depths greater
than 130 feet, the right profile envelope (Type 2) of Figure 19
is essentially the left profile envelope (Type 1) shifted over
(increased salinity) by 1.

Although two profile envelopes define the deeper seasonal
salinity changes, each envelope must necessarily accommodate
more extreme surface layer variations. For example, the sur-
face salinity can decrease to 24/ or less during high precipi-
tation and stream runoff periods.
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Appendix A data samples reveal the following salinity
parameter characterizations:

1. Salinity profiles are generally similar along the
range centerline from 2 kiloyards near the head of Dabob Bay
to 12 kiloyards near the bay entrance.

2. At depths greater than 130 feet, the salinity
typically varies between 29.5%0 and 32YOD over a yearly time
frame.

3. Salinity generally monotonically increases with
depth and helps provide a stable water column. However, tem-
perature variations do occur in which the column becomes un-
stable (density wise) around September.

4. At depths greater than 130 feet the bay is generally
less salinized in April through August than in September through
March, as is indicated in the historical salinity profile en-
velope applicability plots of Figure 20. A single number in
parenthesis implies that the profile is completely contained in
either envelope Type 1 or 2. A "(1 & 2)" notation means that
both envelopes are required to contain it.

The interpretation of Figure 20 is quite straightforward.
Sometime during September or October of 1970, warmer, more
salinized water from Hood Canal entered the bay and increased
the salinity in a stable manner, (greater density water, etc.).
Thereafter, winter and spring season fresh-water intrusions
decreased the topmost layer salinity and established a positive
halocline (salinity gradient). Mixing of deeper water with the
less salinized surface layer subsequently reduced the overall
salinity. This process continued through 1971 and most of
1972 as, apparently, no flushing of the bay occurred during
1971. In contrast a flushing or intrusion of more salinized
Hood Canal water apparently did occur during 1972, 1973, and
1974.

A discussion of flushing is provided in the Kollmeyer thesis
and the Ebbesmeyer thesis; the measured Hood Canal salinity is
listed in Table 4; and profile envelope types are provided in
Figure 21. The appearance of significantly more highly sali-
nized water during late September through early December, indi-
cated by the available data samples, is indicative of a yearly
flushing potential in Dabob Bay.
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Table 4. Hood Canal Salinity Data
(Source: WSAT Sonar Buoy)

Salinity Envelope Types*
Date Type A Type B

Jan 26 1970 /
Feb 2 1
Feb 4 /
Nov 19 vi

Feb 12 1971 /
Feb 25 /
Mar 24 /
May10 /
Sep 29

Jan 13 1972 /
Feb11 /
Jul 28 /
Sep 8

Jan 11 1973 /
May 15 /
May 22 /
Dec 5 /

Mar 14 1974 /
Mar 21 /
Apr 9 1
Apr 22 /
May 16 /
Jun 14 /
Jun 1.7 /
Jun 26
Jul 2 1
Jul11 /
Jul 23 /
Aug 5 /
Aug 23 /
Nov 7

5 Jan 30 1975 1
Apr 2 /
Jun 9 1
Jun 17 /
Jul 14 /
Aug 8 /

Jan 28 1976 /

*See Figure 21.
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4, ACOUSTICS
Dabob Bay is acoustically complex wnenever the transmission

path between two points is nearly horizontal or entails one or
more reflections from the bottom. Short-pulse or long-pulse
CW apparatus testing entails several complexities due to rever-
beration, refraction, and multipath transmission.

Although the bay is suitable for accurate acoustic tracking
endeavors it proves itself resistant to many types of operations
and to tests of devices where acoustic operation is altered

4by volume and bottom reverberation and/or pervasive refraction
conditions.

Discussion of the complexities will be approached as follows:
First, all the water will be removed so the basin shape, geo-
logical characteristics, and present estimated covering can be
examined. After this the water will be returned and its re-
fractive characteristics illustrated. Next, the known inhomo-
geneities conducive to volume scattering will be examined.
Lastly, surface and bottom reverberation, estimated transmission
loss characteristics, and ambient noise will be summarized.

A, GEOLOGICAL FACTORS

Formation of the Dabob Bay basin is attributed by Gilliland12

to glacial sculpturing of pre-existing rock. Glaciation ended
some 18,000 years ago upon completion of the Vashon stage, per
Shannon and Wilson13. This stage, preceded by earlier glacial
epochs, laid down a complex sequence of glacial and interglacial
deposits over the volcanic bedrock. Near-surface sediment
deposits on the Kitsap, Toandos, and Bolton peninsulas and other
lowland areas including the west side of Dabob Bay and Hood
Canal stem from the Vashon stage of the Fraser glaciation. How-
ever, there are several exposures of volcanic rock, such as at
Pulali point and the tip of Bolton peninsula.

Figure 22 shows the location of all the aforementioned
peninsulas, lowlands areas, the three major sills, and streams/
rivers capable of providing eroded sediment for the Dabob basin.

12APL/UW/TE/60-]0, Reconnaissance Geology of the Dabob Bay Area, John H. Gilli-
land, Applied Physics Laboratory, University of Washington, Seattle, WA,
17 June 1960, unclassified

13File No. W-2537-05, Subsurface Investigatio Trident Support Complex
Bangor Annex, WA, Shannon and Wilson, Inc., Geotechnical Consultants,
Seattle, WA, October 23, 1973, unclassified
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Figure 23 illustrates the acoustic range areal extent within
the Dabob basin and the location of the selected cross sections
shown in Figures 24 through 29. These sections were deter-
mined from hydrographic survey charts H9035 and H9038. To be
noted in these cross sections is the steep slope of the eastern
boundary of the basin. Slopes of these magnitudes and less
are subject to retrogressive slumping (sand slides) per Andre-
sen and Bjerrum4  This mechanism is proposed for explaining
the presence of sand at or near the bottom as well as along
the basin slopes.

From extensive surficial and boring samples obtained on
the Kitsap peninsula side of Hood Canal for Trident-related
work, the sedimentary conditions in the Dabob basin can be
safely inferred. Studies show that recent sedimentation covers
the submerged glacial deposit sublayers. In particular the
field sampling work of Burns's, Linger 16 and Wang17 in Dabob Bay
and Hood Canal correlate with surface samples acquired along
the Trident/Bangor waterfront for preparation of an impact
statement.

Figure 30 shows the locations where the bottom (subsur-
face) samples were obtained. A Shipek model 860 sediment
sampler was used. This device acquires a layer of sediment
approximately four inches deep in the center and 0.43 square-
foot in surface area. The size distribution (by weight) analy-
sis is presented in Table 5 for the samples. Figure 30 and
Table 5 are taken from Trident Environmental Baseline Study
Interim Report 18.

The size-distribution analysis of Table 5 illustrates on a
general basis that as the water depth increases the percentage
of fine-sediment constituents (clay-silt, fine sand) also in-
creases. This progression is of course due to the settling out
of coarse particles closer to shore in generally shallower water
and to the seaward removal of fine sediment constituents through
wave turbulence, leaving the coarser and heavier sediment par-
ticles behind. Burns' thesis provides a good summary descrip-

" Slides in Subaqueous Slopes in Loose Sand and Silt, A. Andresen and L.
Bjerrum, Marine Geotechnique, University of Illinois Press, Urbana,
1967, unclassified

15 A Model of Sedimentation in Small Sill-less Embayed Estuaries of the
Pacific Northwest, Robert E. Burns, Ph.D. Thesis, University of Washing-
ton, Seattle, WA, 1962 unclassified

16NAVTORPSTA Dwg 15121, Iso-Firmness Contours - Dabob Bay, (data from E.R.
Linger), June 1960, unclassified

17 Recent Sediments in Puget Sound and Portions of Washington Sound and Lake
Washington, F. H. Wang, Ph.D. Thesis, University of Washington, Seattle,
WA, 1955, unclassified

"8 Trident Environmental Baseline Study Interim Report, Naval Civil Engineer-
ing Laboratory, Port Hueneme, CA, June-September 1973, Vol. 3, unclassified
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Table 5. Hood Canal Sediment Sample Characteristics

Water Depth % > 0.5mm
Station (ft) Descriptors (by weight)

11 80 Muddy fine sand, sand 13.4
12 80 Muddy fine sand 2.1
13 Intertidal Muddy fine sand, sand 21.5
14 80 Muddy fine sand 4.7
15 Intertidal Muddy fine sand, sand 36.8

16 80 Muddy fine sand 2.0
17 30 Muddy fine sand, sand 36.9
18 Intertidal Muddy fine sand, sand 18.6
19 80 Muddy sand 64.6
20 Intertidal Muddy sand 78.4

21 80 Fine sandy mud 1.9
22 Intertidal Muddy fine sand 11.9
23 80 Muddy fine sand 3.2
24 Intertidal Muddy fine sand 3.9
25 80 Muddy fine sand 5.0

26 30 Muddy, fine sandy mud 13.8
27 30 Sandy mud 12.4
28 Intertidal Muddy fine sand 0.1
29 80 Fine sandy mud 0.2
30 Intertidal Muddy fine sand, sand 31.9

31 80 Muddy sand, fine sand 23.8
32 Intertidal Muddy fine sand, sand 36.8

33 Intertidal Muddy fine sand 12.6
34 80 Muddy sand, fine sand 16.9
35 80 Muddy fine sand 0.2

36 80 Muddy fine sand 2.4
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tion of the physical processes available for sediment transport.
In Table 5, for example, the average percentages by weight of
medium to coarse sand (no grade of gravel was reported in
these ,amples) at intertidal, 30-foot and 80-foot depths are
25.2, 21.0, and 10.8 respectively.

In contrast to the thin-layer Shipek sampler sediment re-
trievals, the boring logs of Shannon and Wilson, Inc., and
Haley and Aldrich, Inc. reveal the presence of fine to coarse
gravel in a significant number of instances out to depths of
90 feet. The bore-hole samplers acquire a sample in the top-
most 1.5-foot stratum. In one instance a bore-hole sample
(obviously obtained with little disturbance) showed sand, shell,
and fines in the topmost 0.3 foot and sand, fines, and gravel
in the 0.4-foot layer immediately below. These results of
course, substantiate the findings generally observed with the
thin-layer-retrieving Shipek sampler.

Most important, however, whatever the state of the surface
sediment veneer (loose, hard, or dense/compacted), a harder
underlaying layer most generally begins 3 to 50 feet below the
mudline (contact with water) and consists of glacial till.
Till is a very dense (low water content) mixture of sand, gravel,
and silt. For all intents and purposes only bedrock could act
as a better reflector and/or scatterer acoustically.

Atop the till and closer to the mudline, looser, less dense
mixtures of sand, silt, some clay, and gravel are present.
Sand is also an excellent reflector of acoustic waves.

Utilizing the available geotechnical data for Hood Canal,
the coring device penetration data obtained by Linger, the
surface sampling of Burns and Wang, and the available erosional
and sediment transport processes, the following mudline condi-
tions for the Dabob basin are postulated:

1. Intertidal zone (MHHW to MLLW (mean higher high
water to mean lower low water)): a. volcanic rock; b. sand,
gravel, and grading to boulders.

2. To 30 feet below MLLW: sand to coarse gravel, some
silt.

3. To 100 feet below MLLW: sand to fine gravel, some
~silt.

"File No. 325101, Results of Preliminary Borings and Laboratory Soil Tests -

Trident Drydock, NTS Keyport, Bangor Annex, Washington, Haley and Aldrich,
Inc., Consulting Geotechnical Engineers and Geologists, Cambridge, MA,

August 1974, unclassified
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4. Basin slope region: fine to medium sand, some silt.

5. Basin bottom: silt/mud, some sand, fine gravel.

All the above zones can include traces of shell, and each
is underlain by loose to dense glacial till-like material.

An overall summary of estimated bottom characteristics,
then, is a mud and fine-sand texture on the bottom and lower
slopes with coarser sand and fine gravel toward depths of
80 feet or less. Rock outscrops at Pulali point and tip of
Bolton peninsula are minimally present. The thickness of
loose noncompacted material (silty sand, sandy silt) varies
to at least 4.5 feet, per the cores retrieved by Linger.

B. REFRACTION

An actual/typical sound speed profile was selected for each
of the profile envelopes shown in Figure 14. The dates, times,
and range positions for these profiles r given in Table 6.

Table 6. Typical Sound Speed Profile Identification

Range
Month of Centerline
Greatest Position Date of

Profile Occurrence (yds) Sample Time

1 Feb 8,020 Jan 18 1971 0820
2 Apr 8,000 May 10 1971 0840
3 Jul 8,000 Jul 12 1971 0855
4 Sep 9,000 Sep 10 1971 0822
5 Sep 8,000 Sep 13 1972 0800

Ray diagrams for source depths of 10, 20, 30, 40, 50, 60,
70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, and 500 feet
were generated by computer for each sound speed profile in
Table 6. For each diagram, rays were projected at each degree
of angle from 120 down through 120 up, and their paths were
plotted to a lateral range of 2 kiloyards. These diagrams are
presented in Appendix C.

The diagrams can be used to predict:

1. Shadow zones for shallow depth sources.

2. Refraction-limited ranges for tracking.

3. Transmission loss variability at shallow angles from
the horizontal.
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4. Low acoustic intensity zones at moderate ranges
created by refraction.

The diagrams will also engender appreciation of the acoustic
medium itself.

C, VOLUME REVERBERATION

Anderson's ARTN's 76-7" ' 76-92, and 76-1022 have identified
up to 11 types of resident zooplankton in Dabob Bay. Most of
these types exhibit the classical diurnal vertical migration
patterns in response to light (closer to the surface at night
and deeper during the daylight period). A luminous-equilibrium
depth characteristic has also been observed wherein the zoo-
plankton reside at shallower daytime depths on overcast cloudy
days than on clear days.

More important, however, is the observed tendency of the
scattering strength levels to change with the amount of plankton.

The column scattering strength, defined to be the scattering
strength of 1 cubic yard of water at a given depth, has been
measured at various times of the year. Anderson's ARTN's pro-
vide scattering strength profiles and should be consulted if
the fine structure tendencies and identities of biotic types
are desired. The following general statements serve to summar-
ize the gross scattering strength characteristics of Dabob Bay:

1. Maximum daytime and nighttime scattering strengths
(Sv) whi.-h have been observed at any depth are -64 dB and -61 dB
respectively.

2. The vertical distribution of biota appears to be
correlated with Sv .

3. A volume scattering strength which is dependent on

pulse length over the range of 5 ms to 15 ms at either 30 kHz

2Applied Research Technical Note 76-7, Reverberation Studies on Naval
Torpedo Station's Acoustic Test Range in Dabob Bay During February 1974,
William B. Anderson, Naval Torpedo Station, Keyport, WA, June 1976,
unclassified

i Applied Research Technical Note 76-9, Reverberation Studies on Dabob
Range for December 1974, William B. Anderson, Naval Torpedo Station,

t Keyport, WA, June 1976, unclassified
22App~ied Research Technical Note 76-10, Reverberation Studies Conducted in
Dabob Bay - Strait of Juan de Fuca - Pacific Ocean and Strait of Georgia
(Nanoose) During May 1974, William B. Anderson, Naval Torpedo Station,
Keyport, WA, June 1976, unclassified
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or 60 kHz is not apparent in the data obtained during 1974.
Additional characteristics are summarized in Table 7.

D. SURFACE AND BOTTOM SCATTERING

The phenomenon of sound scattering by the air-sea interface
(water surface) and the basin (bottom) boundaries is termed
backscattering when boundary-incident acoustic waves return
to the acoustic source. The time-variant backscattered level
is termed a reverberation level at the transducer fac. or
acoustic source. Surface and bottom backscattering share some
common causes and exhibit some similar trends. For example,
the boundary roughness caused by wind at the surface and by
sediment size and texture at the bottom affect the boundary
reverberation level. For grazing angles of 200 or less a
variation in reverberation level can be expected for source
tilt angle, source beam pattern, and medium refraction charac-
teristics, which continually modify grazing angles out to the
boundary ray limits and preclude boundary tangency past that
limit. For examples; see ray diagrams for July at depths of
300 feet or greater in Appendix C.

There exist many references on measured values of boundary
backscattering strengths from which known-geometry reverbera-
tion levels can be predictively calculated. Some of these
values are representative of known boundary conditions and
others are merely deduced or sparsely monitored. Barakos23,
JASA 197024, and Urick 25 summarize some of the values for back-
scattering strengths. With these data and the following Dabob
Bay characteristics, an estimate of the boundary scattering/
reverberation effects can be made.

c. The Dabob Bay bottom scattering surface is mainly
composed of fine to medium sand, silt, and/or clay.

2. Local wind speed will affect surface roughness and
aerated state. Figures 9 and 14 can be used to predict monthly
occurrence of wind speeds (though not their duration).

3. Refraction/sound speed profiles will increase or
decrease the boundary grazing angles, depending on source depth,
time of year, and effective transducer beamwidth. The ray
diagrams of Appendix C will facilitate the selection of rela-
tive testing geometries.

" AD 451643, Underwater Reverberation as a Factor in ASW Acoustics, Peter
A. Barakos, 11 September 1964, unclassified

24Survey of Literature on Reflection and Scattering of Sound Waves at the
Sea Surface, JASA 1970, Vol 47:1209, unclassified

'2-Principles of Underwater Sound for Engineers, R. J. Urick, McGraw-Hill
Book Co., Inc., New York, 1967, unclassified
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Variation of boundary backscattering characteristics with
frequency is published in various sources but direct appli-
cability to Dabob Bay bottom reverberation levels awaits
experimental determination.

For initial reverberation level estimating purposes the
following parameter ranxes can be used:

1. Bottom scattering strength Sb -20 dB

2. Surface scattering strength Ss  -25 dB (can vary
between -35 dB to -25 dB depending on wind speed and frequency)

3. Volume scattering strength Sv -60 dB

For most testing conditions, the bottom reverberation level
in the shallow-water Dabob environment will be the limitinq
reverberation factor.

E, TRANSMISSION LOSS

The specification/determination of acoustic transmission
loss in shallow water is quite difficult. Here shallow water
is defined as water in which sound propagation to a distant
point involves reflection(s) from one or both boundaries.

For example, the placement of source and receiver in the
vertical plane, the conditions of the water surface with re-
gard to reflection and scattering, and a non-homogeneous tex-
ture of the bottom all combine to distort the received pulse.

In a CW reverberent field at moderate range, the trans-
mission loss characteristics of the shallow water environment
are predictable within narrower confidence intervals. The
model of shallow water transmission loss characteristics in
BBN Report 156326 has been verified as applicable in Dabob Bay;
see BBN Report 168827.

The result of this model is:

TL = 15 log r + cr + K dB, i.e.,

a mathematically resultant compromise between cylindrical and
spherical spreading loss plus linear absorption loss plus K dB.

4 BBN Report 1563, Sound Transmission in ShaZow Water, Part 1: Analysis,
P.W. Smith, Jr., Bolt, Beranek, and Newman, 24 October 1967, unclassified

27BBN Report 1688, Characteristics of Sound Propagation in the Dabob Bay and
Nanoose Rangqs as They Relate to Torpedo Radiated Noise Data, Bolt, Beranek,
and Newman, Inc., September 1968, confidential
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In this equation, r is the lateral range in kiloyards and a

is the volumetric attenuation in dB per kiloyard. The deter-
mination of K based upon BBN Report 1563 is included in Appen-
dix D.

F. AMBIENT NOISE

Ambient noise level is conditional upon many parameters.
These are not always specified because the measurement condi-
tions are not all determined or known with certainty. In
contrdst to this norm the levels shown in Figure 31 are repre-
sentative of the following conditions:

Graph 1: All range craft machinery secured (Signal 0)
no other craftin sight in the ranging area. This graph repre--
sents the natural sea state 0 environment noise.

Graph 2: Same machinery conditions as above but it was
raininq and the wind speed was 15 mph.

Graph 3: Signal 1 lineup of range craft (YF 451) ma-
chinery (one 10-kW motor generator and one each 60-kW dc and
10-kW ac diesel-driven generator operating and two 500-hp main
propulsion engines idling but declutched). Range craft 300
yards from measurement hydrophone array at bow-beam aspect.
Sea state 0. No additional noise sources observed.

With ranging precautions and weather permitting, the general
ambient noise level can be expected to lie between curves 1
and 2. Precautions entail the quieting of range craft and
spotting of public craft. The waiting out of bad weather, if
schedules will permit, is also advisable if natural ambient
noise contamination will be troublesome.

'I.
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5. GENERAL PARAMETERS

A. DENSITY

The recovery of low reserve buoyancy devices in Labob Bay
has occasionally been troublesome due to the equilibrium depths
involved. Table 8 shows the variation in at with depth and
time of yr-ir (at = (density-l)x1000).

Thus the density at 30-foot depth on 12 July 1971 was
1.02070 gm/cm 3. (See profile 3 of Table 6.) Density was
determined from the tables of Special Publication SP-6528.

Table 8 illustrates the seasonal variation in surface lay-
er conditions as evidenced by the density gradients and the
absolute density variation. In the May to early-July period,
per the table, the maximum runoff has occurred and the surface
layer is approaching its maximum temperature, thus producing
the minimum surface layer density of the period. During the
fall and winter period the runoff is lower end so are the tem-
peratures. Surface layer salinity and density therefore in-
creases.

The yearly density variation of Dabob Bay waters is exem-
plified by Figure 32. In this figure are plotted the maximum
and minimum at values versus depth from Table 8. From con-
sideration of the possible runoff and temperature conditions
during the June-July period, a density minimum of 1.018 gm/cm

3

at 10-foot depth is quite likely, with a value as low as
1.017 gm/cm 3 certainly possible.

Range users, therefore, must provide for adequate reserve
buoyancy in near-surface density ranging between 1.017 - 1.023
gm/cm 3 if normal recovery is desired. Also to be noted are
the following:

1. Cells of water of differing density are known to
reside at most depths over most of the range areal extent
(see Kollmeyer's thesis and Ebbesmeyer's thesis).

2. The surface layer density is dependent on runoff,
which is difficult to predict.

m Special Publication SP-65, Handbook of Oceanographic Tables, U. S. Naval
Oceanographic Office, Washington, DC, 1966, unclassified
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Table 8. Typical Density Values for Dabob Bay
art = (density-i) 1,000

PROFILE 1 PROFILE 2 PROFILE 3 PROFILE 4 PROFILE 5
Depth Jan 18 1971 May 10 1971 Ju~l 12 1971 Sep 10 1971 Sep 13 1972
(f t) (art) (aYt) (Ut) (art) (ayt)

Surface 22.578 18.493 19.666 20.368 20.648

10 22.578 20.250 20.090 20.460 20.648

30 22.720 22.584 20.702 22.504 22.285

50 23.113 23.123 22.395 22.801 22.739

100 23.887 23.518 22.710 23.456 23.198

2CJ 24.077 23.771 22.926 23.463 23.411

300 24.184 23.851 22.919 23.525 23.462

4,00 24.292 24.076 23.202 23.570 23.472

500 24.320 24.275 23.478 23.851 23.733
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3. If reserve buoyancy at a water density of 1.017
gm/cm 3 to 1.018 gm/cm 3 is not available an updated check of
surface layer conditions should be pursued.

4. For depths greater than 100 feet the density gra-
dient is quite low.

B. TIDES AND CURRENTS

Dabob Bay has a mixed tidal cycle; it consists of both
diurnal and semidiurnal components, dependent upon the time
of month or year. The diurnal cycle has one high and one low
tide per day and the semidiurnal cycle two of each. Figure 33
presents a typical mixture of the tides for the Dabob Bay
range. The tidal range varies throughout the year. The ex-
tremes range from approximately -4.5 to +15.3 feet.

The tidal corrections from data based upon Seattle tides
are -1:3 minutes and approximately +0.3 foot. Thus a 10-foot
tide at 0800 in Seattle corresponds to a 10.3-foot tide at
0757 at Dabob Bay.

The currents have been measured by Savonius rotor and drift
bottle-type instruments. Short-term data measured using the
latter type instrument is reported in APL/UW 60-3521, and APL/
UW 652230. These documents essentially indicate that the current
speed is less than 0.15 knot at depths greater than 100 feet.

A long-term (45-day) current measurement awaits execution.
It will better definitize the tidal components and directions
and hopefully expose any wind-induced (surface-level-slope-
change-induced) mid-depth flows.

2APL/UW 60-35, Measurement of Deep Currents with a Submergible Drift
Bottle, G.R. Garrison etal, Applied Physics Laboratory, University of

Washington, 3 May 1961, unclassified
APL/UW 6522, Measurement of Subsurface and Bottom Currents 1961-1964,

G.R. Garrison, Applied Physics Laboratory, University of Washington,

28 July 1965, unclassified
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6. SCHEDULING PRECAUTIONS
Attention to the information and data presented in this

report will assist range users and prospective users in
planning and carrying out operations in the Dabob Bay range.
Particular note should be taken of the following:

1. Tests sensitive to sound refraction anomalies
should be conducted in November, when the anomalies are low-
est, or in March or April, when they are next lowest. See
page 35.

2. If a test requires that ambient noise be at mini-
mum, scheduling should allow for delays due to weather and
sea state.

3. In June and July, if surface recovery of the device
ranged is planned, it must be recognized that because of tem-
perature and fresh-water intrusion, near-surface water density
may be- as low as 1.017 gm/cm 3.

69/70
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Range Positions (Page 1 of 8)

(k = kiloyards)
11 to 11.5 to

Date 2k 4k 6k 8k 10k 11.5k 12k

Jan 5 1971 x x x x x x
12 x x x x x x
18 x x x x x
2j x x x x X

Feb x x x x
5 x x x x x X

11 4.75 x x
18 3.6 5.35 x 9.85 11.85
22 x x x x
23 3.6 x x x

Mar 1 X X X X x x
5 x x x x x x
9 3.55 8.2

13 x x x x x x
19 x x x x x x
25 x x x x x x
30 x x x x x x

Apr 6 x x x x x x
9 x x x x x

13 x x x x
21 x x x x x x
23 x x x x x x
29 x x x x x
30 x x x

May 4 x x x x
10 x x x x
11 x 4.55 x x x x
14 x x x x
18 x x x x x x
21 x x x x x x
27 x x x x x x

Jun 3 X x x x 9.4 x
8 x x x

11 x x x x
16 x x x x x x
21 x x x
25 x X x x X
28 x x x x x X
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Range Positions (Page 2 of 8)
(k = kiloyards)

11 to 11.5 to

Date 2k 4k 6k 8k 10k 11.5k 12k

Jul C 1971 x x x x x
12 x x X" X xx

19 x x x x x
21 x Y x

27 x I x x x

29 x x x

Aug 2 x x x x x x
6 x x x x

17 x x x x x x
K 23 x 5.8

24 x x x x x x
25 x x x x

Sep 3 x x

10 x x x 9.0 x
15 x x x x x
16 x x x x x x
22 x x
23 x x
30 X x

Oct 1 x x x
4 x x x x x x
7 x x x x x x

13 x x x

15 x x x x

28 x x x x

Nov 22 x x

Dec 28 X x x x x x

Jan 12 1972 x x x x

21 x x

28 x 8.2

Feb 7 X x x X

11 x 7.7

15 x x x

17 x x x x x

23 x x x 9.8
24 8.15 12.9

25 x x X

Mar 1X 5.7 X x

7 x x
10 5.5 8.3 x
15 3.55 x x
21 x x x

23 X X

29 4.75 x

31 8.4 10.4 x
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Range Positions (Page 3 of 8)

(k =kiloyards)
11 to 11.5 to

Date 2k 4k 6k 8k 10k 11.5k 12k

Apr 5 1972 X X
10 x x x X
12 2.45 3.6 5.5 8.4 10.4
17 X X X
19 3.75 X 7.8 X
21 2.7 3.65 4.75

26 x x X

May ~ X X x x I
3 x x X x
8 x X x X

11 X X x X
16 x x X
26 X x X x X
30 x x X X X

Jun 2 X X X

7 5.0 X x X
12 X x x X

16 X x
22 3.6 5.7 8.35
29 3.7 Y x X X

30 X X x

Jul 6 X X x
12 x X
20 X x

21 X x
26 X 8.6
27 5.7 8.2

Aug 2 X x X x 9.7 X

4 X X x X X X

10 x X X x

11 X x X
14 2.2 x X X X
16 X X x X X

24 X X X

31 X X x

Sep 6 X X X

13 X X
20 X X x
28 X x

29 X X X X X

Oct 4 3./ X

5 4.7 X x x
13 4.5 3.4
18 x x X x x

19 x x x X X
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Range Positions (Page 4 of 8)

(k = kiloyards)
11 to 11.5 to

Date 2k 4k 6k 3k 10k 11.5k 12k

Oct 24 1972 x x x
25 3.65 x x x
26 x x

Nov 8 5.6 x x
15 x x x
20 x x x x
22 x 7.8 x x
29 x 3.7 5.8
30 x x

Dec 4 x 8.4 9.7 x
5 x x x 8.4

11 3.75 8.4 x
13 3.75 8.4 x
15 x x x x x
20 x x 7.3 x
21 x x x x x x
27 x x x
29 x x

Jan 15 1973 2.7 8.4 9.7
17 x x
18 x x x x
22 2.65 3.75 5.8
24 3.75 x x
26 x x

Feb 1 3.7 8.4 x
8 x x x

14 X x x
20 x x x X
22 x X x x
27 7.73 x

Mar 1 8.4 10.2
7 x x x x

15 x x x
21 8.4 x
22 x x x x
26 x x
28 x x x

Apr 2 x x x
4 x x x
6 x x

16 x x x
18 x x x
25 x x x
2/ x x

x x
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ARange Positions (Page 5 of 8)

(k kiloyards)

11 to 11.5 to
Date 2k 4k 6k 8k 10k 11.5k 12k

May 2 1973 x x x x
8 x 8.4 X

11 x 8.4
22 x x
24 x x x X
29 x x x
31 4.75 x x x

Jun 6 4.75 x x
8 x x x x X

13 4.25 7.5 x
19 x x x
22 x x x
26 x x x x x
28 x x x

Jul 5 x x x
12 x x x
18 x x 8.. x
20 x 5.8 x x x
26 4.75 x x x
30 x x x
31 x x

Aug 1 x x x
8 x x x x

10 x x

15 -.3 x
24 x x X
30 X x x
31 x x x x

Sep 4 x x
6 x x x

12 x x x
19 x 7.8
20 5.7 x x
28 x x x

Oct 2 x x
15 x x x x x
16 3.1 x x x
18 x x x x x

T. 24 3.1 8.4 10.1
31 x x X

Nov 13 4.75 8.4 X
14 4.25 8.4 x
16 x X
21 x x
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Range Positions (Page 6 of 8)

(k = kiloyards)
11 to 11.5 to

Date 2k 4k 6k 8k 10k 11.5k 12k

Dec 6 1973 4.25 8.4 x x

13 4.75 8.4 x
14 x X

17 x x 9.55

Jan 3 1974 4.75 8.4 9.55
9 x x x x X

17 X
21 8.4 x
31 4.75 9.55

Feb 5 X 9.5

12 8.4 x
19 x 9.5 X

9 20 x 8.4 9.5

21 x x x

Mar 1 x x
7 x x

4: 20 x x x

25 4.25 x x x x
26 4.25 x 8.4

29 x x

Apr 2 x x x

5 x x x

10 x x X

17 x x x x x
23 X X X

26 X x X x X

30 x X

May 7 4.25 9.55

14 5.5 9.8
15 4.25 x x x x

16 x x x
22 3.8 x x X x

24 4.25 x

Jun 5 x x
11 x x 8.4

17 x x x

21 x x

25 6.2 9.55

26 X X X

28 x x

Jul 2 X X X

8 x x x x x

18 4.25 8.4 9.55

31 X 89.4
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Range Positions (Page 7 of 8)

(k = kiloyards)

11 to 11.5 toDate 2k 4k 6k 8k 10k 11.5k 12k

Aug 13 1974 x x 8.15 x x
19 x x x
22 x x x
26 X x 9.55
28 X X X

29 x x

Sep 3 x 8.95 X
5 x x x
10 4.6 8.4 x
13 4.6 X x
18 8.4 x x

Oct 2 x x
7 x 4.6 x 3.4 x

15 8.4 x
17 x x
22 X 8.95 X
23 x x
31 X x x x

Nov 7 x x x x 9.7
12 x x x x x
13 x x x x x

Dec 3 x x
17 x x
23 8.4 x

Jan 6 1975 X x
16 3.1 5.8 9.8 x

Feb 4 x x x x X
7 x x

13 x X
14 x x x
27 4.6 8.85 X

Mar 4 8.4 9.8
12 5.8 8.4
26 5.8 7.9 9.8

Apr2 x x
8 3.1 5.9 x x X

15 5.6 8.4 X
16 x x x x X
2 x x 7.8 x X
30 x x
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Range Positions (Page 8 of 8)

(k kiloyards)
11 to 11.5 to

Date 2k 4k 6k 8k 10k 11.5k 12k

May 7 1975 x x
14 3.8 7.8 X
20 x x x
28 x x x x

Jun 5 x 7.7
13 3.9 6.6 8.5
23 x x x
26 x 6.6 8.85

Jul 10 8.4 X

21 x x x x x
29 3.1 x x 9.8

Aug 12 3.1 x x x x
21 6.4 8.2 X

Sep 5 x 8.4
19 x
25 8.6 X

Oct 6 8.6 x
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CALCULATION OF TRANSMISSION LOSS

Smith's (BBN Report 1563, Part I) shallow water, depth-averaged estimate
of the transmission loss (TL) between a source and receiver separated by
a lateral distance r under conditions of (1) a reverberent field, (2) an
isogradient sound speed profile, and (3) uniform channel conditions is
given by the following formula.

2 

[

TL = -10 log bD) S eavrJ Leb]

where

rb 3gd rbg (D - d)

DC DC0 0
and

Cb - Cs
D

for a positive isogradient condition (see Figure D-l);

rbbg(D - d) rb sgd

DC DC0 0

and
Cs - Cb

D

for a negative isogradient condition (see Figure D-2);

b total boundary reflection loss in nepers/radian, and

I _f exp {- 1/2 r + + #
L 5 0 m 0
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C s r SURFACE CS
'1

SOUP.CE

.4 ... . .

D I D

Cb B CB

Figure D-1. Positive Isogradient Figure D-2. Negative Isogradient

Contours of -10 log I or K using the normalized angles (see Figuze D-3)

___ [rd 2 n brg (D - d)l
C C DCo

60 = emanating ray source angle

Cs = sound speed at the surface (top of channel)
C = sound sy-ed at the source depth d

Cb = sound speed at the bottom (bottom of channel)

b = b + bb the sun of the boundary reflection loss coefficients

b = surface reflection loss coefficient in nepers/radian/reflection

bb = bottom reflection loss coefficient in nepers/radian/reflection

for small angles (<350)
sin e b and B = b sin , B = b sin e

b b sS Sb b b

where

Ss and ebare the grazing angles and B and BB
are the surface and bottom reflection losses in nepers/reflection.

VI 
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2.0
15 dB

1.5 10

~5

2-

1.0

.5

0 .2 .5 1 1.5 2

NORMALIZED ANGLE 01

Figure D-3. Contours of -10 L0g I

For Dabob Bay, BBN Report 1688 suggests

b = 0.3 and bb 1.1,

resulting in b nominally equaling 1.4.

At lateral ranges of r 1 500 yards, the magnitude of the last two terms
in braces is less than 1 dB for all source and receiver depth combinations
in the range .95 D 5 d .5 D and for "eyeball" equivalent sound speed
gradients (g) ±0.075 sec-1 . Examples of "eyeball" equivalent iso-
gradients for the five actual/typical sound speed profile conditions char-
acterizing Dabob Bay are shown in Figures D-4 through D-8.

For all practical purposes the estimate of TL between a source and a
single receiver separated by a lateral distance r under reverberent field

E.' conditions is

TL = 15 log r + ar + 5 log b + 5 log D - 4 + XdB

substituting b = 1.6 and D = 200 yards (600-foot depth)

TL becomes 15 log r + ar + 8.5 + XdB
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SOUND SPEEb (ft/sec)

Figure D-4. Sound Speed/Tmperature Salinity Profile
Dabob Bay Range, 1-18-71
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TEMPERATURE (0C)

6 8 10 12 14 16 18

100

200

g - .06C

4 300

400 -

500 -

600 -

700

SALINITY (ppt)
25 30 35 40 45

800 1 1 t I
4775 4800 4825 4850 4875 4900 4925

SOUND SPEED (ft/sec)

Figure D-5. Sound Speed/Temperature Salinity Profile

Dabob Bay Range, 5-10-71
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TEMPERATME ("C)
6 10 12 14 16 18

100 -

200 -

g - .027
4 300
500

600

if ,g -. 016
700

sxz -a~r (pt)
•25 30 35 40 45

5001 1 1

"4775 4809 4825 4850 4875 4900 4925
# SOUND SPEED (ft/sec)

. Figure D-6. Sound Speed/Temperature Salinity P-rofile
Dabob Bay Range, 7-12-71
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TEMPWERATURE (OC)J8 10 12 14 16 18

I 100-

I9 g .016
200-

300-
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500

A 600

700
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Figure D-7. Sound Speed/Temperature Salinity Profile
Dabob Bay Range, 9-10-71[ 191
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T4PERTURE (0C)
6 810 12 14 16 18

100

200 -

300

400 -

g - .027

600 -

700 -

SALINITY (ppt)
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8 0 0 .... . I I . - , _ I . "'
4775 4800 4825 4850 4875 4900 4925
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Figure D-8. Sound Speed/Temperature Salinity Profile

Dabob Bay Range, 9-13-72
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The sensitivity of this equation to variations in b and D such as 1.4 b
: 1.9 and 500 D 600 feet is <0.5 dB. As noted earlier A is less than

i 1 dB for r 1500 feat and 300 < D 570 feet.

The word "estimate" as used in this appendix is deserving of further
elaboration. Consider the geometry shown in Figure D-9.

II

4 4 II2
0RECEIVE

D

ISOURCE

Figure D-9. Source and Single Hydrophone Receiver Geometry

If the receiver were positioned at various depths and the readings of

sound pressure at these depths were averaged it would be found that the
ratio of sound pressure levels

r (depth averaged)
(source level) j

would be described by

TL =15 log r + cmr + 8.5 + XdB.

Althouih this equation was derived on the basis of isogradient and
constant chnnel characteristics wherein the bottom refection loss was
areally cons-ant and channel depth invariant (i.e., no bottom slopes),
its application to Dabob Bay is reasonable at short ranges even though
none of the above conditions are met if sufficient vertical averaging of
the sound field at distance r is accomplished.

At short ranges (r 1500 feet) the reflected/reverberent field is
essentially unaffected by either the existent bottom slopes in measurement
areas of interest and is only slightly affected by marked changes in either
the surface or bottom reflection loss. The ray diagrams in Appendix C
demonstrate the potential seriousness of acoustic refraction on the sound

field that is not reflected/reverberent. Also to be considered is surface
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reflected (Lloyd mirror) interference. Figures D-10 through D-12 illus-
trate tha reflected or reverberent field rays and Appendix C illustrates
the possibilities for lower sound pressure regions caused by refraction.
Both of these effects are minimized but not eliminated by asymmetrically
spaced hydrophones (for Lloyd mirror effect reduction and spatial averaging).

Although rot ordinarily part of an oceanographic range uqer's guide
the following environmental conclusions are pertinent:

1. The effects of sound ray refraction are greatest when the sound
measurement hydrophcne is it or near the running depth of the device under
test.

2. Bolt, Beranek and Newman has gained experimental verification
of the validity of its transmission loss equation. Per BBN Report 1688,
the accuracies obtained with a three-element asymmetrically spaced vertical
array should fall within a range of the 15 log r trend such that the stan-
dard deviation is less than 3 dB.

Study of obtained data by experienced personnel will uncover measure-
ment condition problems and allow systematic reduction of the confidence
interval in which the mean absolute level must reside.
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